Why is Visualization Important?
Data visualization transforms complex information into understandable and impactful charts. A well-designed visualization highlights trends and anomalies, making analysis and decision-making easier. With Streamlit, you can quickly create visualizations, bringing your data to life in a clear and interactive way.
Visualization Functions in Streamlit
1. st.pyplot() – Charts with Matplotlib
Displays charts created with Matplotlib.
import streamlit as st
import matplotlib.pyplot as plt
import numpy as np
# Data and scatter plot
x = np.linspace(0, 10, 100)
y = np.sin(x)
fig, ax = plt.subplots()
ax.plot(x, y, label="Sine(x)")
ax.set_title("Sine Wave Chart")
ax.legend()
# Displaying in Streamlit
st.pyplot(fig)
2. st.line_chart() – Line Chart
Quickly create line charts using DataFrames or arrays.
import streamlit as st
import pandas as pd
import numpy as np
# Sample data
data = pd.DataFrame({
"Day": range(1, 11),
"Temperature": np.random.randint(15, 35, 10)
})
# Line chart
st.line_chart(data.set_index("Day"))
3. st.bar_chart() – Bar Chart
Ideal for displaying comparisons between categories.
import streamlit as st
import pandas as pd
# Sample data
data = pd.DataFrame({
"Categories": ["A", "B", "C", "D"],
"Values": [10, 20, 30, 15]
})
# Bar chart
st.bar_chart(data.set_index("Categories"))
4. st.area_chart() – Area Chart
Displays area charts to highlight proportions over time.
import streamlit as st
import pandas as pd
import numpy as np
# Sample data
data = pd.DataFrame(np.cumsum(np.random.randn(20, 3), axis=0),
columns=["Sales", "Profit", "Costs"])
# Area chart
st.area_chart(data)
5. st.altair_chart() – Interactive Charts with Altair
Create customized interactive visualizations with Altair.
import streamlit as st
import pandas as pd
import numpy as np
import altair as alt
# Sample data
data = pd.DataFrame({
"x": np.random.rand(50),
"y": np.random.rand(50),
"category": np.random.choice(["A", "B", "C"], size=50)
})
# Altair chart
chart = alt.Chart(data).mark_circle(size=60).encode(
x="x",
y="y",
color="category",
tooltip=["x", "y", "category"]
)
st.altair_chart(chart, use_container_width=True)
6. st.graphviz_chart() – Diagrams with Graphviz
Use Graphviz to create interactive diagrams with nodes and edges.
import streamlit as st
# Graphviz diagram
st.graphviz_chart('''
digraph {
Study -> Project
Project -> Success
Success -> Recognition
}
''')
With these tools, you can turn data into compelling visual stories in Streamlit. Experiment with different charts to create dynamic and informative interfaces!
Copyright Statement: Unless stated otherwise, all articles are original to this site, please credit the source when sharing.
Article link:http://pybeginners.com/python-streamlit/visualizing-charts-with-streamlit/
License Agreement:Attribution-NonCommercial 4.0 International License